2-5 Videos Guide

2-5a

- The Chain Rule
- If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $F=f \circ g$ defined by $F(x)=f(g(x))$ is differentiable at x and $F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
- Alternative form of the Chain Rule (Leibnitz notation)
- If $y=f(u)$ and $u=g(x)$ are both differentiable functions, then

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Exercises:

- Differentiate.
- $y=\sin \left(x^{2}\right)$

2-5b

- $y=(\sin \sqrt{x})^{3}$
- $f(t)=t \sin \pi t$
- $y=\cos (a x)$
$2-5 c$
- $y=\sqrt{\sin \left(1+x^{2}\right)}$
- $y=x \sin \frac{1}{x}$
- $y=\sin (t+\cos \sqrt{t})$

2-5d

- The General Power Rule
- $\frac{d}{d x}\left[[f(x)]^{n}\right]=n[f(x)]^{n-1} f^{\prime}(x)$

Exercises:

- Differentiate.

$$
\begin{aligned}
& \circ \quad F(x)=\left(1+x+x^{2}\right)^{99} \\
& \circ \quad U(y)=\left(\frac{y^{4}+1}{y^{2}+1}\right)^{5}
\end{aligned}
$$

Proof:

- The differentiation formula for the secant function

